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Abstract| This paper describes the design
and the realization of two membrane supported
microstripmillimeter-wave planar bandpass �l-
ters. Both �lters exhibit transmission zeros
and a 2.3 dB port-to-port insertion loss for
the 37 GHz 3.5% bandwidth 2-pole �lter and
a 1.5 dB insertion loss for a 60 GHz 8% band-
width 4-pole �lter. The use of membrane tech-
nology allows a signi�cant reduction of inser-
tion loss, combined with a reproducible, low
cost fabrication process.

I. INTRODUCTION

M
ILLIMETER -wave communication sys-
tems are expanding rapidly as they of-

fer many advantages over conventional wire-
less links. They allow the use of very wideband
radio links suitable for inter satellite commu-
nications and personal communications.
We have focused on 38 GHz radio links for

base station communications in PCS networks
and upcoming 60 GHz multipurpose telecom-
munication systems [1] [2]. Waveguide tech-
nology results in the best performance, but
waveguides su�er from high production costs
and result in bulky systems. For conventional
passive components (microstrip, CPW), the
dielectric and radiation loss in the substrate
reduce the �lter resonator unloaded Q result-
ing in high insertion loss and poor rejection
performance. It is therefore di�cult to build
�lters with narrow bandwidth, sharp skirts
and reasonable insertion loss using microstrip
lines. Silicon or GaAs micromachining tech-
niques suppress most of these drawbacks by
replacing the substrate with a thin dielectric
membrane. In these circuits, the propagation

media is air, and the whole circuit or sub-
system, including packaging, is fabricated in
a collective process. In the past, microma-
chining techniques have been successfully ap-
plied to K and W Band microstrip membrane
supported �lters [8][9], and have lead to very
good results. In this paper, we report con-
ception, fabrication, and measurements of pla-
nar self-packaged bandpass �lters. Transmis-
sion zeros are highly desirable in many appli-
cations to achieve a sharp out of band rejection
with a reduced number of poles compared to
conventional Chebyschev functions. Self pack-
aging using micromachined cavities and vias-
grooves allows to reduce ohmic loss in the cir-
cuit since it is possible to use large dimensions
without increasing radiation loss. Moreover,
it is important to note that the membrane �l-
ters can be easily combined with active de-
vices (low noise ampli�ers, power ampli�ers)
and high e�ciency planar antennas. This will
result in very low-loss integrated front-ends for
millimeter-wave applications.

II. 37 GHz 2 POLE FILTER

A. Fabrication

A stress compensated 1.4 �m membrane
layer consisting of SiO2/Si3N4/SiO2 is de-
posited on a high resistivity 525 �m thick
silicon substrate using thermal oxidation and
low pressure chemical vapor deposition. Af-
ter the membrane is deposited, the circuit is
patterned on the top side of the wafer using
standard 2.5 �m gold electroplating technique.
Next, the silicon is completely etched under
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Fig. 1. Transverse section of the microstrip structure

the �lter circuit until the �lter is left standing
on the thin dielectric membrane. At the same
time, via grooves are opened all around the �l-
ter circuit in order to ensure a complete shield-
ing of the structure. The lower cavity is etched
in a 525 �m low resistivity wafer and metal-
ized with gold. The upper cavity is formed
by double side etching. First, a selective etch
is performed on the upper side of the wafer
to begin probe window openings. Next, the
lower side is patterned and the wafer is etched
200 �m on both sides to open the probe win-
dows and to form the upper cavity. The upper
cavity is also metalized with gold. The three
wafers are stacked together and silver epoxied
to form a completely shielded, self packaged
circuit, as shown in �g. 1.

The operating mode is microstrip with wide
dimensions. The strip width was chosen to
be 700 �m with a ground plane spacing of
200 �m.

B. Single resonator and 37 GHz �lter

A single microstrip resonator has been fab-
ricated in order to measure its unloaded Q. We
have obtained an unloaded Q of 420 at 37 GHz.
The basic principle of operation for the �lter is
the same as presented in [3]. The input / out-
put ports are coupled capacitively while the
hairpin resonators are coupled magnetically.
This principle has been widely used [5] [6] [7]
in both planar and non planar devices in the
past. The inter resonator coupling value has
been computed from a two poles Chebyschev
0.1 dB ripple prototype. Physical dimensions

PP

3.5 mm

5.3 mm

Fig. 2. 2 pole �lter layout. The dark areas show the

via grooves locations. P denotes the calibration
planes.

have been computed using HP Momentum in
a similar manner to full wave coupled cavity
�lter design. First, the single resonator res-
onance frequency is adjusted using full wave
simulation. Next, the inter-resonator coupling
is adjusted in a quasi-free oscillation con�gu-
ration. In that case, input and output cou-
plings are maintained very low and the cou-
pling value can be computed from the odd and
even mode frequencies of the two resonators.
For the feed lines, the gap has been adjusted
with full wave simulator. Resulting �lter lay-
out is shown �g. 2.

Measurements were done using an HP
8510C network analyzer Calibration was done
using a TRL procedure with NIST MULTI-
CAL software [4]. The calibration planes
are taken on silicon CPW ports. The re-
sults presented include the CPW to microstrip
transition. Full wave computations obtained
from Momentum agree very well with mea-
surements. The transition has not been taken
into account by these simulations, and the
measured results are agree very well with the
simulations. Note that S11 rose from -15 to -
12 dB, and the external Q also increased due
to the e�ect of the dielectric discontinuity. In-
sertion loss is 2.3 dB, with 3.5% relative band-
width.
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Fig. 3. Measured and simulated response of the 2-pole
�lter

Fig. 4. Photograph of the actual 2-pole �lter.

III. 60 GHz 4 POLE FILTER WITH

TRANSMISSION ZEROS

A. Fabrication

The structure used for the 4-pole �lter is the
same as previously described, except that the
strip width was reduced to 500 �m in order
to be able to build the U shaped resonator.
To maintain high Qu, we have increased the
cavity height from 200 to 250 �m. Moreover,
metalization patterning was done using 1 �m
evaporated gold and lift-o� procedure in or-
der to take advantage of the smooth metal-
ization surface obtained. Two �=2 resonators
are added, with their lengths adjusted to keep
the same resonant frequency. This layout, pre-
sented in �g. 5, allows a small structure in
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Fig. 5. 4 pole �lter layout. The dark areas denote the

vias grooves that shield the circuit.

Fig. 6. Photograph of the actual 4-pole �lter.

length, which prevents the excitation of par-
asitic TM cavity modes. Shielding is made us-
ing via grooves and one may notice the via
grooves on each side of the U shaped res-
onators. The measured unloaded Q of a single
resonator is 450 at 60 GHz.

B. Filter design and results

The �lter design was done using HP Mo-
mentum according to a 4-pole 8% bandwidth
Chebyschev prototype. Cross coupling be-
tween resonators 1 and 4 was computed using
the formulas given in [5], and Chebyschev cou-
pling coe�cients can be modi�ed to keep a cor-
rect response using formulas given in the same
paper. In our case, cross coupling coe�cient is
low enough to keep a Chebyschev response in
the pass band without modifying coupling co-
e�cients. Let knm be the coupling coe�cient
between resonator n and m(see �g. 5). In our
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Fig. 7. Measured and simulated response of the 4-pole
elliptic �lter

design, k12 and k23 and k14 are not indepen-
dent. In order to be able to determine k12, we
�rst determine the resonator spacing to get the
proper k23. Next the gap width is adjusted
to get the correct k14. Finally, gap between
resonators 1 and 2 is adjusted to match the
correct k12.

The measured and simulated responses are
presented on �g. 7. The agreement between
simulated and measured responses is very
good, and the frequency shift between simu-
lated and measured response is less than 1%
of the center frequency. The relative passband
is 8% and the measured port to port (includ-
ing transition) insertion loss is 1.5 dB with a
return loss below -14 dB. The measured out of
band rejection is better than 35 dB, and the
whole �lter is smaller than 4 x 6 mm2.

IV. CONCLUSION

In this paper, we have presented measured
results obtained after conception, realization
and measurement of micromachined �lters
with transmission zeros. The measured in-
sertion losses are very low compared to other

planar �lters at these frequencies. These cir-
cuits are very low cost considering that they
are made with MMIC fabrication techniques.
The micromachined �lters are easy to inte-
grate with active MMICs using the input /
output CPW lines.
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